Abstract

A microbial process for the production of optically-active γ-decalactone from the ricinoleic acid present as triglycerides in castor oil has been developed, γ-decalactone (γDL) is a component of some fruit flavours, being an important organoleptic component of peach flavours. Screening showed two red yeast microorganisms, Rhodotorula glutinis and Sporobolomyces odortts to be especially suitable for this biotransformation. The process involves lipase-mediated hydrolysis of the castor oil to give free ricinoleic acid, uptake of the acid by the cells and aerobic fermentation to achieve abbreviated β-oxidation of the ricinoleic acid (12-hydroxyoleic acid) into 4-hydroxydecanoic acid (4HDA), lactonisation of the acid into γ-DL, followed by solvent extraction and distillation. γ-DL broth concentrations of 0.5-1.2g · 1-t were obtained after 3-5 days from fermentation media containing 10 g · 1-1 castor oil, representing an 8.3-20.0% theoretical yield. Intermediates detected were consistent with the operation of the β-oxidation pathway. Appreciable amounts of novel metabolites identified as cis and trans isomers of a tetrahydrofuran (C10) were also produced. Their formation from 4HDA appeared to be non-enzymic and was favoured by anaerobic conditions. Yields of γ-DL were inversely proportional to the concentration of castor oil present in the medium, indicating that substrate inhibition takes place. The highest yields of γ-DL were obtained when castor oil was present from the beginning of the fermentation, rather than when added once the fermentation had become established, demonstrating that the β-oxidation pathway and/or transport system require continual induction. Significant amounts of γ-DL were not produced from other fatty acids, including ricinelaidic acid, the trans isomer of ricinoleic acid. γ-DL formation was dramatically inhibited by antibiotic inhibitors of oxidative phosphorylation, indicating the importance of intact β-oxidation pathways, whereas inhibitors of protein synthesis and cell-wall synthesis had much less marked effects. Selective extraction of 4HDA from the fermentation broths, and of γDL from broth lactonised by heating at low pH, could be achieved by adsorption to Amberlite XAD-1 and XAD-7 resins respectively. Some product could be recovered from the exit gases of the fermenter by passing through propylene glycol traps. This pathway is unusual in that it is a rare example of the truncated β-oxidation of a fatty acid by microorganisms. This effect probably occurs because of partial inhibition of one or more enzymes of the β-oxidation pathway by the C10 hydroxylated fatty acid intermediate(s) allowing intracellular accumulation of the 4HDA, followed by leakage out of the cell; although further metabolism of this C10 intermediate does take place slowly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.