Abstract

In this work two-photon absorption laser-induced fluorescence was used to measure oxygen atom (O) concentrations in streamer discharge afterglow in a variety of fuel/air mixtures in order to account for the O reaction pathways in transient plasma ignition. It is demonstrated that O atoms are generated in high concentration (∼5 × 1017 cm−3) directly below the high-voltage anode in a point-to-plane geometry. The corresponding lifetimes in air were on the order of hundreds of microseconds. Fuel chemistry provides consumption pathways via chain branching reactions even without sustained combustion, and the corresponding O-atom lifetimes were much shorter than in air and dependent on the fuel concentration. At the richest conditions, corresponding to a fuel–air equivalence ratio of 2.4, O lifetimes were on the order a few microseconds or less. These experimental results are compared to modelling estimates in order to better understand the role of atomic oxygen in the chemical processes leading to ignition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.