Abstract

Hydraulic fracturing is a procedure of injecting high pressure fluid into the wellbore in order to break shell rock and facilitate gas flow. It is a very costly procedure and, if not conducted properly, it may lead to environmental pollution. To avoid costs associated with pumping fluid outside the perspective (gas rich) zone and improve one’s knowledge about the reservoir rock, microseismic monitoring can be applied. The method involves recording seismic waves, which are induced by fractured rock, by an array of sensors distributed in a wellbore nearby or on the surface. Combining geological and geophysical knowledge of region with signal processing computer techniques, one can locate induced fractures allowing for real-time process monitoring and rock properties evaluation. In Poland perspective shell formation is located very deep, i.e. about 4km from the surface. Additionally overlaying rock formations strongly attenuate and disperse seismic waves. Therefore, signal recorded by a surface array of sensors is very weak. Signal from a seismic event can be orders of magnitude lower than noise. To recover signal connected with fractured rock one needs to use numerical methods utilizing coherence of signals. An example of such a computer procedure is presented in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.