Abstract

In-situ alloying is a facile method for exploring high-performance metallic materials for additive manufacturing. However, composition inhomogeneity is inevitable, and it is a double-edged sword for the properties of in-situ alloyed parts. Appropriately controlling the composition inhomogeneity benefits the applications of in-situ alloying in specific microstructural and properties design. In this work, the Al20Cu alloy was selected as the benchmark alloy to investigate the tailoring of composition inhomogeneity. The morphology and area percentage of composition inhomogeneity in the as-built samples were firstly analyzed. These results provided evidence for the formation of composition inhomogeneity and indicate that its content is tightly dependent on processing parameters. The characteristics of the molten pool under various processing parameters were investigated by modeling the laser remelting process. Based on these, a processing map was established to guide the tailoring of composition inhomogeneity. This study expands the understanding of the formation mechanism of composition inhomogeneity in in-situ alloyed parts and sheds light on employing laser powder bed fusion in-situ alloying for new materials development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call