Abstract

Porous titanium alloys have been extensively studied in biomedical applications due to their elastic moduli similar to that of bone compared to other implant materials. Accordingly, TiNi and Ti-6Al-4V foams have been widely characterized in terms of their various mechanical properties; however, their fatigue properties have not been well studied, even though, it has a vital importance in structural applications such as medical implants. In this study, porous titanium alloys were processed via sintering at 1200 °C for 2 hours employing Mg space holder technique. TiNi and Ti-6Al-4V alloys with a porosity of 49 and 51 vol.%, respectively, were mechanically characterized by monotonic and cyclic compression tests. The compressive strength was determined to be 148 MPa for TiNi foams whereas 172 MPa for Ti-6Al-4V foams with homogenously distributed pores having diameters in the range of 250-600 µm. Endurance limit values were determined relative to the yield strength of each porous alloy in order to enable the comparison of fatigue behavior. The fatigue tests applied with a frequency of 5 Hz and a constant stress ratio (σmin/σmax) of 0.1 have revealed that porous TiNi alloys have an endurance limit of approximately 0.6 σy whereas porous Ti-6Al-4V alloys have an endurance limit of approximately 0.75 σy. The differences and similarities in the microstructure and their effect on mechanical behavior of the two alloys were also studied by employing scanning electron microscope (SEM).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.