Abstract
In pharmaceutical nanotechnology, the intentional manipulation of working processes to fabricate nanoproducts with suitable properties for achieving the desired functional performances is highly sought after. The following paper aims to detail how a modified coaxial electrospraying has been developed to create ibuprofen-loaded hydroxypropyl methylcellulose nanoparticles for improving the drug dissolution rate. During the working processes, a key parameter, i.e., the spreading angle of atomization region (θ, °), could provide a linkage among the working process, the property of generated nanoparticles and their functional performance. Compared with the applied voltage (V, kV; D = 2713 − 82V with RθV2 = 0.9623), θ could provide a better correlation with the diameter of resultant nanoparticles (D, nm; D = 1096 − 5θ with RDθ2 = 0.9905), suggesting a usefulness of accurately predicting the nanoparticle diameter. The drug released from the electrosprayed nanoparticles involved both erosion and diffusion mechanisms. A univariate quadratic equation between the time of releasing 95% of the loaded drug (t, min) and D (t = 38.7 + 0.097D − 4.838 × 105D2 with a R2 value of 0.9976) suggests that the nanoparticle diameter has a profound influence on the drug release performance. The clear process-property-performance relationship should be useful for optimizing the electrospraying process, and in turn for achieving the desired medicated nanoparticles.
Highlights
Today, nanomaterials play one of the most important roles in the research and development of modern pharmaceutics [1–3]
Based on the above-mentioned knowledge, here for the first time, we have investigated the influence of spreading an angle of the atomization region on the diameter of resultant nanoparticles
Compared with the applied voltage (V), θ could provide a better correlation with the diameter of resultant nanoparticles (D), suggesting its usefulness for accurately predicting the nanoproducts’ size
Summary
Nanomaterials play one of the most important roles in the research and development of modern pharmaceutics [1–3]. New material processing procedures [4–8], combined with different kinds of raw materials [9–13] and novel innovative strategies for constructing functional products [14–18], are frequently introduced into this application field for providing efficacious drug delivery and enhancing the therapeutic effects of active pharmaceutical ingredients (APIs). Electrohydrodynamic atomization (EHDA) is a popular technique for creating nanoproducts, which mainly includes electrospraying and electrospinning. These new methods explore electrical energy to atomize the working fluid for producing solid products at micro or nano scale [19–23]. Pehlearcmtraocehuyticdsr2o0d19y, n11a,m22i6c atomization (EHDA) is a popular technique for creating nanoproducts, w2hoifc1h2 mainly includes electrospraying and electrospinning. These new methods explore electrical energy (tud(apmenudafdEhjojrlpnuuaartyevteoeeiionrvpdvsansellcmcditicttenoetlazhzoceiarTSlTSlmpceteaooosoamsabohhahhdadnsspmspeiitoporeetcipriiimmszitcwswenoumaairsippe,sctacangssreesn,noaaalelspytnsneisnseuhtrufz,fioiit’itcttclundunnnesslensesoilttang.tnaecddwwwpuoFoFenfctflciearfoifinrudtoooat[pggpirrili3tmlmmcroyosuureadd9kafotcnmnrrrdreere,eoeinoptd4eeaaonddtcycoedem0ealulmaag1ii1nrdl]rrcceddccm.patpr,aifaictioseehslmbsrsttrdtuEensseeoereoaeav[ruiivodldsodhihd3dcceedncsedels7iuaacuroipeenagif,io,tvvytcalcogal3ilroaeeunteegtgo8yruhsansccsnpr]rtswwnpttadd.ahaiprrrmiridnrpnmuooomiiHenidopttgenusasdrnndooroippanntr[auaaenesouv3wlprrbiibtssycgnp1aaewcoossrotowem–iyrgyuseeoetsunuvil3headeedliddaegteta6dedf[ld[rp,eiru3t]ttt3tesz,ei)hhhh7drnn1loo,oextvheee,e–puhaanvl.3ftaaei3rnnrsrere8asdsrnoeoo6aaiio]orienmenld.ft]dppeipppovo)elggttuiie,regaHateyhddlloccyclteryrreeyphotdtotat-pp-oriiirflnfewdeuolfococrrfloalsulnuouolfcd–eeodesectfigigihrciovtsvissdudfsioertryniednecrcaeiieeluedrennorirgdtlstsl,pllaislydscrcssesaoemrotlpillstcpciohnnguoumh–nr[titfegefdcd2rarde[eoaoroeo42syeeeyspefonclss–4lneexenreaccppsi3–sdooltcpcrralueer03rrertcleetumaaenvcca]0rrseaan.tomyyholrea],sttrai.gapsiirssniicotnnennapanpeeoioI–Iwlgsglosggnronrtypheaansodfloppyacscnyycfpfpriocuroarrdatesekotaheooihmsmilcrddiadlfiletccacoaienelpspeeplrndr–nccegt,msms[lmlltdhlaar’1ieessrisnyppnnneeyo9xxaaaaeidcroo–oinsccnnnconshnp2eepitpeaagaeddcaaalu3urmaaslemenannn]utptrrattcs.ytiiiotthohipcetrciscciicirassohecectssnpsoietltll,,cs,wglrrpeepsriaeuuesscpfcsfoo[ssoiuualltcc3srssbsbeiritttrra9fnelsskvceieuulttlyi,oisiuthhiii4ebbrrcfnrnneneeri0eaoealliddgggsyeecssr]rrfl,. These new methods explore electrical energy (tud(apmenudafdEhjojrlpnuuaartyevteoeeiionrvpdvsansellcmcditicttenoetlazhzoceiarTSlTSlmpceteaooosoamsabohhahhdadnsspmspeiitoporeetcipriiimmszitcwswenoumaairsippe,sctacangssreesn,noaaalelspytnsneisnseuhtrufz,fioiit’itcttclundunnnesslensesoilttang.tnaecddwwwpuoFoFenfctflciearfoifinrudtoooat[pggpirrili3tmlmmcroyosuureadd9kafotcnmnrrrdreere,eoeinoptd4eeaaonddtcycoedem0ealulmaag1ii1nrdl]rrcceddccm.patpr,aifaictioseehslmbsrsttrdtuEensseeoereoaeav[ruiivodldsodhihd3dcceedncsedels7iuaacuroipeenagif,io,tvvytcalcogal3ilroaeeunteegtgo8yruhsansccsnpr]rtswwnpttadd.ahaiprrrmiridnrpnmuooomiiHenidopttgenusasdrnndooroippanntr[auaaenesouv3wlprrbiibtssycgnp1aaewcoossrotowem–iyrgyuseeoetsunuvil3headeedliddaegteta6dedf[ld[rp,eiru3t]ttt3tesz,ei)hhhh7drnn1loo,oextvheee,e–puhaanvl.3ftaaei3rnnrsrere8asdsrnoeoo6aaiio]orienmenld.ft]dppeipppovo)elggttuiie,regaHateyhddlloccyclteryrreeyphotdtotat-pp-oriiirflnfewdeuolfococrrfloalsulnuouolfcd–eeodesectfigigihrciovtsvissdudfsioertryniednecrcaeiieeluedrennorirgdtlstsl,pllaislydscrcssesaoemrotlpillstcpciohnnguoumh–nr[titfegefdcd2rarde[eoaoroeo42syeeeyspefonclss–4lneexenreaccppsi3–sdooltcpcrralueer03rrertcleetumaaenvcca]0rrseaan.tomyyholrea],sttrai.gapsiirssniicotnnennapanpeeoioI–Iwlgsglosggnronrtypheaansodfloppyacscnyycfpfpriocuroarrdatesekotaheooihmsmilcrddiadlfiletccacoaienelpspeeplrndr–nccegt,msms[lmlltdhlaar’1ieessrisnyppnnneeyo9xxaaaaeidcroo–oinsccnnnconshnp2eepitpeaagaeddcaaalu3urmaaslemenannn]utptrrattcs.ytiiiotthohipcetrciscciicirassohecectssnpsoietltll,,cs,wglrrpeepsriaeuuesscpfcsfoo[ssoiuualltcc3srssbsbeiritttrra9fnelsskvceieuulttlyi,oisiuthhiii4ebbrrcfnrnneneeri0eaoealliddgggsyeecssr]rrfl,. wAenecpbn(echofi.ouooxxneefeaaan)hnpnnp.aennr,m,idtcdrveseaooceDigtiiirrhncepplsivcaiiyelordmtmr=aaeniagcinodrrsndrteaeeesttfeergonwnniitenocdcc(fctctvotwsllitaooaoeewtpiphlil,hrflnlsnsnooeeropo’.ictda,cisnnoapredlnAtypcsukr)moatis.oi.artidan,rrnehnanBm,emiaevgy.rgtvnameedeheeieest.lnflreat,eeateeireaegpnutclgdtwrlchretpipseaFrdderoho(naaottsiDe’nhreengrtrssckgaaaapuo)tatpipdttmohhzrnrcdurcoreaziaagoeeasisaiylnte1ntsp,enflnies.banteobuoderc,rClrgwsfaexfliitdinoneymct(s.haaheesrrgpoi)(tpr.iefslcar,,wceeslupahrirexesi)tt.enygoacpeex,hoaictrns.aropogeno,artetitpneieegDfirotconur,tedomcsnhihcros=ainimtoagneeihznodzftnarbngezetifes(dcronliliwt.dyfewiln.nhtwniuB,acfl,aBeogtodoacalonuherso,sfneprwedkteeenkdtw)antisd.oridsnorpnceeoiariiggoenrnsegtklmesainuinfifodtFylnollfehuntutitliingthfiahugneeseiniedretunigrs(flhddts’o,crttseusw)eneahhci,idnsplaaeedoaa1ltninranr.aotooewdoehamdbClpnpp.eneoeeaoeaeacdBrerttdrrntrtkeoxtrterhtviyieioriepmtvcnecsiwlsdleri(elgpeiodeowerczedsfsoisentee)mf’rirwnd,mldncaeodudooemsiiseiitnpnnuitaadthnnheatsntelmiattgotetirndaaaesilalectntnlrysptttihssptiwdnee,eaoronvragtneronolhearea(eieoafDrdnlemcreeacfmoigo)callfrrespeyniteceetdpterceaadestsoedrtegaruunrriacstrsttoollayitsibittcraodcdnaitalei(nthaneneneeteinogaesc)sssstt,
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.