Abstract

Abstract This work presents the studies on the optimization of the process of phenol hydroxylation over the Ti-MWW catalyst. The medium of the reaction was only water introduced into the rector with the 30 wt% hydrogen peroxide (oxidizing agent) and formed during the reaction from the hydrogen peroxide. For the mathematical optimization the rotatable-uniform design was used. The main investigated technological parameters were: the temperature, the molar ratio of phenol/hydrogen peroxide, the catalyst content and the reaction time. The course of the main functions describing the process were presented in the form of layer drawings. The analysis of the layer drawings allowed to establish the most beneficial parameters for this process. Studies have shown that in water solution it is best to conduct phenol hydroxylation process at: the temperature of 93-100oC, phenol/hydrogen peroxide molar ratio 0.9-1, catalyst concentration 3-3.5 wt% and during the reaction time of 55-60 minutes. Under these conditions, it is possible to achieve phenol conversion of 85 mol%, selectivity of transformation to organic compounds in relation to phenol consumed 50 mol% and the yield of hydroquinone about 19 mol%. The phenol hydroxylation method, presented in this article, is a preferred alternative to conventional solutions, as it is more environmentally and cost-effective, taking into account consumption of raw materials and energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call