Abstract

Existing measurements of low-speed turbulent surface friction on a flat plate, in the absence of pressure gradient and roughness, are shown to be consistent with a simple analysis based on functional similarity in the velocity profile. In particular, the fully developed turbulent boundary layer is found to be unique within the accuracy of the experimental data, with uniqueness defined as the existence of a definite correspondence between local friction coefficient and momentum thickness Reynolds number. The relationships known as the law of the wall and the velocity defect law are found to describe the turbulent velocity profiles accurately for a considerable range of Reynolds numbers, and an effort is made to clarify the physical significance of these formulae. Finally, the proper definition of a length Reynolds number is discussed in terms of the asymptotic local properties of the ideal boundary layer, and numerical values for ideal mean and local friction coefficients are tabulated against Reynolds numbers based on momentum thickness and on distance from the leading edge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.