Abstract

The problem of the loading of a helical spring by an axial force and a torque is considered using the three-dimensional equations of the non-linear theory of elasticity. The problem is reduced to a two-dimensional boundary-value problem for a plane region in the form of the transverse cross section of the coil of the spring. The solution of the two-dimensional problem obtained enables the equations of equilibrium in the volume of the body and the boundary conditions on the side surface to be satisfied exactly. The boundary conditions at the ends of the spring are satisfied in the integral Saint-Venant sense. The problem of the equivalent prismatic beam in the theory of springs is discussed from the position of the solution of the non-linear Saint-Venant problem obtained. The results can be used for accurate calculations of springs in the non-linear strain region, and also when developing applied non-linear theories of elastic rods with curvature and twisting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.