Abstract

A lacuna of a linear hyperbolic differential operator is a domain inside its propagation cone where a proper fundamental solution vanishes identically. Huygens’ principle for the classical wave equation is the simplest important example of such a phenomenon. The study of lacunas for hyperbolic equations of arbitrary order was initiated by I. G. Petrovsky (1945). Extending and clarifying his results, Atiyah, Bott and Gårding (1970–73) developed a profound and complete theory for hyperbolic operators with constant coefficients. In contrast, much less is known about lacunas for operators with variable coefficients. In the present paper we study this problem for one remarkable class of partial differential operators with singular coefficients. These operators stem from the theory of special functions in several variables related to finite root systems (Coxeter groups). The underlying algebraic structure makes it possible to extend many results of the Atiyah-Bott-Gårding theory. We give a generalization of the classical Herglotz-Petrovsky-Leray formulas expressing the fundamental solution in terms of Abelian integrals over properly constructed cycles in complex projective space. Such a representation allows us to employ the Petrovsky topological condition for testing regular (strong) lacunas for the operators under consideration. Some illustrative examples are constructed. A relation between the theory of lacunas and the problem of classification of commutative rings of partial differential operators is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call