Abstract

We discuss the probabilistic 1-maximal covering problem on a network with uncertain demand. A single facility is to be located on the network. The demand originating from a node is considered covered if the shortest distance from the node to the facility does not exceed a given service distance. It is assumed that demand weights are independent discrete random variables. The objective of the problem is to find a location for the facility so as to maximize the probability that the total covered demand is greater than or equal to a pre-selected threshold value. We show that the problem is NP-hard and that an optimal solution exists in a finite set of dominant points. We develop an exact algorithm and a normal approximation solution procedure. Computational experiment is performed to evaluate their performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.