Abstract
AimsType 2 diabetes mellitus (T2DM) is a risk factor for breast cancer initiation and progression. Glutamine (GLN) is a critical nutrient for cancer cells. The aim of this study was to investigate the effect of T2DM-associated compounds upon GLN uptake by breast cancer cells. Main methodsThe in vitro uptake of 3H-GLN by breast cancer (MCF-7 and MDA-MB-231) and non-tumorigenic (MCF-12A) cell lines was measured. Key findings3H-GLN uptake in the three cell lines is mainly Na+-dependent and sensitive to the ASCT2 inhibitor GPNA. IFN-γ increased total and Na+-dependent 3H-GLN uptake in the two breast cancer cell lines, and insulin increased total and Na+-dependent 3H-GLN uptake in the non-tumorigenic cell line. GPNA abolished the increase in 3H-GLN uptake promoted by these T2DM-associated compounds. ASCT2 knockdown confirmed that the increase in 3H-GLN uptake caused by IFN-γ (in breast cancer cells) and by insulin (in non-tumorigenic cells) is ASCT2-dependent. IFN-γ (in MDA-MB-231 cells) and insulin (in MCF-12A cells) increased ASCT2 transcript and protein levels. Importantly, the pro-proliferative effect of IFN-γ in breast cancer cell lines was associated with an increase in 3H-GLN uptake which was GPNA-sensitive, blocked by ASCT2 knockdown and mediated by activation of the PI3K-, STAT3- and STAT1 intracellular signalling pathways. SignificanceIFN-γ and insulin possess pro-proliferative effects in breast cancer and non-cancer cell lines, respectively, which are dependent on an increase in ASCT2-mediated glutamine transport. Thus, an effective inhibition of ASCT2-mediated glutamine uptake may be a therapeutic strategy against human breast cancer in T2DM patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.