Abstract

We propose a generalized version of the Prize Collecting Steiner Tree Problem (PCSTP), which offers a fundamental unifying model for several well-known $\mathcal{NP}$ -hard tree optimization problems. The PCSTP also arises naturally in a variety of network design applications including cable television and local access networks. We reformulate the PCSTP as a minimum spanning tree problem with additional packing and knapsack constraints and we explore various nondifferentiable optimization algorithms for solving its Lagrangian dual. We report computational results for nine variants of deflected subgradient strategies, the volume algorithm (VA), and the variable target value method used in conjunction with the VA and with a generalized Polyak---Kelley cutting plane technique. The performance of these approaches is also compared with an exact stabilized constraint generation procedure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.