Abstract

IntroductionVariably protease sensitive prionopathy (VPSPr) is a recently described, sporadic human prion disease that is pathologically and biochemically distinct from the currently recognised sporadic Creutzfeldt-Jakob disease (sCJD) subtypes. The defining biochemical features of the abnormal form of the prion protein (PrPSc) in VPSPr are increased sensitivity to proteolysis and the presence of an N- and C-terminally cleaved ~8 kDa protease resistant PrPSc (PrPres) fragment. The biochemical and neuropathological profile of VPSPr has been proposed to resemble either Gerstmann–Sträussler–Scheinker syndrome (GSS) or familial CJD with the PRNP-V180I mutation. However, in some cases of VPSPr two protease resistant bands have been observed in Western blots that co-migrate with those of type 2 PrPres, suggesting that a proportion of the PrPSc present in VPSPr has properties similar to those of sCJD.ResultsHere, we have used conformation dependent immunoassay to confirm the presence of PrPSc in VPSPr that is more protease sensitive compared with sCJD. However, CDI also shows that a proportion of PrPSc in VPSPr resists PK digestion of its C-terminus, distinguishing it from GSS associated with ~8 kDa PrPres, and showing similarity to sCJD. Intensive investigation of a single VPSPr case with frozen tissue from multiple brain regions shows a broad, region-specific spectrum of protease sensitivity and differential stability of PrPSc in the absence of PK treatment. Finally, using protein misfolding cyclic amplification and real-time quaking induced conversion, we show that VPSPr PrPSc has the potential to seed conversion in vitro and that seeding activity is dispersed through a broad range of aggregate sizes. We further propose that seeding activity is associated with the ~19 and ~23 kDa PrPres rather than the ~8 kDa fragment.ConclusionsTherefore, PrPSc in VPSPr is heterogeneous in terms of protease sensitivity and stability to denaturation with the chaotrope GdnHCl and includes a proportion with similar properties to that found in sCJD.Electronic supplementary materialThe online version of this article (doi:10.1186/s40478-014-0152-4) contains supplementary material, which is available to authorized users.

Highlights

  • Protease sensitive prionopathy (VPSPr) is a recently described, sporadic human prion disease that is pathologically and biochemically distinct from the currently recognised sporadic Creutzfeldt-Jakob disease subtypes

  • Using protein misfolding cyclic amplification and real-time quaking induced conversion, we show that Variably protease sensitive prionopathy (VPSPr) PrPSc has the potential to seed conversion in vitro and that seeding activity is dispersed through a broad range of aggregate sizes

  • PrPSc in VPSPr is heterogeneous in terms of protease sensitivity and stability to denaturation with the chaotrope guanidine hydrochloride (GdnHCl) and includes a proportion with similar properties to that found in sporadic Creutzfeldt-Jakob disease (sCJD)

Read more

Summary

Introduction

Protease sensitive prionopathy (VPSPr) is a recently described, sporadic human prion disease that is pathologically and biochemically distinct from the currently recognised sporadic Creutzfeldt-Jakob disease (sCJD) subtypes. Defined by clinico-pathological criteria, different subtypes of human prion disease can be classified using these PrPres molecular profiles in conjunction with the presence of mutations and polymorphisms in the prion protein gene (PRNP). In sporadic CJD (sCJD) six molecular subtypes have been defined that combine the PRNP codon-129 genotype polymorphism (MM, MV or VV) with the apparent molecular mass of the unglycosylated protease resistant fragment of PrPres on western blots which is either 21 kDa (type 1) or 19 kDa (type 2A), according to the nomenclature of Parchi and Gambetti [1]. Other PrPSc fragment sizes have been noted in association with other human prion diseases, e.g. GSS with the P102L mutation in PRNP, in which either type 1 PrPres or a low molecular mass ~8 kDa PrPres fragment can predominate [2]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call