Abstract

Equal-channel angular pressing (ECAP) is a convenient processing tool for introducing very significant grain refinement, typically to the submicrometer level, in a wide range of metals. It is shown by experiment that processing by ECAP produces very similar microstructures in single crystals and in polycrystalline materials. Thus, after a single ECAP pass, aluminum single crystals and polycrystalline high-purity aluminum both exhibit microstructures consisting of bands of elongated subgrains and the experiments on single crystals have established unambiguously that these bands lie with their longer axes oriented parallel to the primary slip system. A model for grain refinement is developed incorporating the major experimental observations. Calculations of the shearing patterns for different processing routes lead to the conclusion that an equiaxed microstructure is achieved most rapidly in ECAP when slip occurs on three orthogonal planes over a wide range of angles: an example is route B C where the sample is rotated by 90° in the same sense about the longitudinal axis after every pass through the ECAP die.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call