Abstract

We study a symplectic formulation of continuum mechanics on the Fréchet manifold of (smooth) embeddings J : M → N. From a virtual work principle we derive a generalized Hamiltonian dynamics, which allows to include the description non-hyperelastic media as well as a non-linear and non-local material behaviour. Dividing out the (rigid) translation group, the deformation gradient and the stress tensor appear—via Marsden-Weinstein reduction—as natural geometric objects. The balance law on the reduced phase space becomes a weak equation for exact differential forms, which relates the dynamics of the deformation gradient to the stress. This equation is subjected to an interesting gauge freedom and yields the classical continuum dynamics as well as boundary conditions for the stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.