Abstract
We consider a version of Palais' principle of symmetric criticality (PSC) that is applicable to the Lie symmetry reduction of Lagrangian field theories. Given a group action on a space of fields, PSC asserts that for any group-invariant Lagrangian, the equations obtained by restriction of Euler–Lagrange equations to group-invariant fields are equivalent to the Euler–Lagrange equations of a canonically defined, symmetry-reduced Lagrangian. We investigate the validity of PSC for local gravitational theories built from a metric and show that there are two independent conditions which must be satisfied for PSC to be valid. One of these conditions, obtained previously in the context of transverse symmetry group actions, provides a generalization of the well-known unimodularity condition that arises in spatially homogeneous cosmological models. The other condition seems to be new. These results are illustrated with a variety of examples from general relativity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.