Abstract

The non-mechanical principle of transport of a liquid crystal (LC) encapsulated in a narrow cavity between two coaxially arranged cylinders is introduced based on the interaction of the temperature and director field gradients. The temperature gradient is created due to a heat flow from the inner cylinder surface, whereas the temperature on the outer cylinder surface is maintained constant. The director field gradient is caused by the deformation of the planar-oriented LC cavity upon exposure to a double electrostatic layer, which naturally appears at the LC phase-solid interface. The size of the gap between the bounding surfaces, cylinder curvatures, and thermal conditions are determined, which allow initiation of the LC phase flow in the horizontal direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.