Abstract
Mouse plasma alpha-2-macroglobulin (m alpha 2M) was isolated and the N-terminal amino-acid sequences determined after separation of the 165-kDa and 35-kDa subunits. These sequences were compared to the protein sequence predicted by the cDNA, which was cloned from a mouse liver library and sequenced. From these data it is evident that both subunits are encoded by one mRNA of approximately 5 kb expressed predominantly in liver. The smaller subunit, with the N-terminal sequence DLSSSDLT, comprises the C-terminal 257 residues of m alpha 2M and is derived from a single-chain precursor probably by proteolytic processing at an arginine residue in the sequence PTRDLSS. Analysis of the predicted protein further showed all the salient features of a proteinase inhibitor of the macroglobulin family: a bait region that deviates from all known sequences in this family, a very conserved internal thiolester site and conserved cysteine residues and putative N-glycosylation sites. The synthesis of m alpha 2M in adult liver was demonstrated by Northern blotting and in fetal liver by in-situ hybridization. Transient transfection of COS cells with the cDNA under control of a viral promoter demonstrated the secretion and partial processing of m alpha 2M in the culture medium. In plasma the level of m alpha 2M was found to be stable as expected for the murine counterpart of human plasma alpha-2-macroglobulin. The possibilities of using the mouse as a genetic model to study this proteinase inhibitor in vivo are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.