Abstract
Retinal image motion could be due to the movement of the observer through space or an object relative to the scene. Optic flow, form, and change of position cues all provide information that could be used to separate out retinal motion due to object movement from retinal motion due to observer movement. In Experiment 1, we used a minimal display to examine the contribution of optic flow and form cues. Human participants indicated the direction of movement of a probe object presented against a background of radially moving pairs of dots. By independently controlling the orientation of each dot pair, we were able to put flow cues to self-movement direction (the point from which all the motion radiated) and form cues to self-movement direction (the point toward which all the dot pairs were oriented) in conflict. We found that only flow cues influenced perceived probe movement. In Experiment 2, we switched to a rich stereo display composed of 3D objects to examine the contribution of flow and position cues. We moved the scene objects to simulate a lateral translation and counter-rotation of gaze. By changing the polarity of the scene objects (from light to dark and vice versa) between frames, we placed flow cues to self-movement direction in opposition to change of position cues. We found that again flow cues dominated the perceived probe movement relative to the scene. Together, these experiments indicate the neural network that processes optic flow has a primary role in the identification of scene-relative object movement.SIGNIFICANCE STATEMENT Motion of an object in the retinal image indicates relative movement between the observer and the object, but it does not indicate its cause: movement of an object in the scene; movement of the observer; or both. To isolate retinal motion due to movement of a scene object, the brain must parse out the retinal motion due to movement of the eye (“flow parsing”). Optic flow, form, and position cues all have potential roles in this process. We pitted the cues against each other and assessed their influence. We found that flow parsing relies on optic flow alone. These results indicate the primary role of the neural network that processes optic flow in the identification of scene-relative object movement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.