Abstract

Nickel-based alloys have demonstrated significant promise as structural materials for Gen-IV nuclear reactors. However, the understanding of the interaction mechanism between the defects resulting from displacement cascades and solute hydrogen during irradiation remains limited. This study aims to investigate the interaction between irradiation-induced point defects and solute hydrogen on nickel under diverse conditions using molecular dynamics simulations. In particular, the effects of solute hydrogen concentrations, cascade energies, and temperatures are explored. The results show a pronounced correlation between these defects and hydrogen atoms, which form clusters with varying hydrogen concentrations. With increasing the energy of a primary knock-on atom (PKA), the number of surviving self-interstitial atoms (SIAs) also increases. Notably, at low PKA energies, solute hydrogen atoms impede the clustering and formation of SIAs, while at high energies, they promote such clustering. The impact of low simulation temperatures on defects and hydrogen clustering is relatively minor. High temperature has a more obvious effect on the formation of clusters. This atomistic investigation offers valuable insights into the interaction between hydrogen and defects in irradiated environments, thereby informing material design considerations for next-generation nuclear reactors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call