Abstract

A general primal—dual algorithm for linearly constrained optimization problems is formulated in which the dual variables are updated by a dual algorithmic operator. Convergence is proved under the assumption that the dual algorithmic operator implies asymptotic feasibility of the primal iterates with respect to the linear constraints. A general result relating the minimal values of an infinite sequence of constrained problems to the minimal value of a limiting problem (constrained by the limit of the sequence of constraints sets) is established and invoked. The applicability of the general theory is demonstrated by analyzing a specific dual algorithmic operator. This leads to the “MART” algorithm for constrained entropy maximization used in image reconstruction from projections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.