Abstract

One of the basic characteristics of the glass transition, the Prigogine-Defay ratio, connecting jumps of the thermal expansion coefficient, isothermal compressibility, and isobaric specific heat capacity in vitrification is rederived in the framework of the thermodynamics of irreversible processes employing the order-parameter concept introduced by de Donder and van Rysselberghe [Thermodynamic Theory of Affinity (Stanford University Press, Stanford, 1936)]. In our analysis, glass-forming liquids and glasses are described by only one structural order parameter. However, in contrast to previous approaches to the derivation of this ratio, the process of vitrification is treated not in terms of Simon's simplified model [Z. Anorg. Allg. Chem. 203, 219 (1931)] as a freezing-in process proceeding at some sharp temperature, the glass transition temperature T(g), but in some finite temperature interval accounting appropriately for the nonequilibrium character of vitrifying systems in this temperature range. As the result of the theoretical analysis, we find, in particular, that the Prigogine-Defay ratio generally has to have values larger than 1 for vitrification in cooling processes. Quantitative estimates of the Prigogine-Defay ratio are given utilizing a mean-field lattice-hole model of glass-forming melts. Some further consequences are derived concerning the behavior of thermodynamic coefficients, in particular, of Young's modulus in vitrification. The theoretical results are found to be in good agreement with experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call