Abstract
The price-setting newsvendor (PSN) model has received considerable attention since it was first introduced by Whitin (1955). However, the existing publications that study this model consistently assume the existence of a continuous density function of demand. In this paper, we study the PSN model with Poisson demand — that is, a discrete demand distribution without density function. The Poisson PSN has an important property, it combines price-dependency of variance and coefficient of variation of the (standard) additive and multiplicative models: demand variance decreases and the coefficient of variation increases in the selling price. We develop an analytical solution approach that covers a broad class of demand models, including linear and logit demand, explain how to apply our approach to more general demand functions via piece-wise linear approximation, and develop analytical and numerical insights. We characterize the behavior of the optimal price and we analyze the performance gap of different price-setting heuristics. Among other insights, we observe some instances in which a significant share of profits would be lost if the discrete nature of demand were not modeled explicitly. To help companies overcome this risk, we present an easily applicable decision rule with which to determine when to use simple heuristics and when to solve the associated discrete optimization problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.