Abstract

Massive-scale self-administered networks like Peer-to-Peer and Sensor Networks have data distributed across thousands of participant hosts. These networks are highly dynamic with short-lived hosts being the norm rather than an exception. In recent years, researchers have investigated best-effort algorithms to efficiently process aggregate queries (e.g., sum, count, average, minimum and maximum) on these networks. Unfortunately, query semantics for best-effort algorithms are ill-defined, making it hard to reason about guarantees associated with the result returned. In this paper, we specify a correctness condition, Single-Site Validity, with respect to which the above algorithms are best-effort. We present a class of algorithms that guarantee validity in dynamic networks. Experiments on real-life and synthetic network topologies validate performance of our algorithms, revealing the hitherto unknown price of validity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.