Abstract

AbstractAssume a multi‐server memoryless loss system. Each server is associated with a service rate and a value of service. Customers from a common Poisson arrival process are routed to the servers in an unobservable way, where the goal is to maximize the long‐run expected reward per customer (which is the service value times the probability that the customer is not blocked). We first solve this problem under two criteria: social optimization and Nash equilibrium. Our main result is that the price of anarchy, defined as the ratio between the expected gain under the two criteria, is bounded by . We also show, via examples, that this bound is tight for any number of servers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.