Abstract

<abstract><p>Based on a neural field network model with impulsive and random disturbances, a preview control method that makes full use of known future information is proposed to reduce the static error of the target signal and the transient oscillatory behavior of the controlled system when it receives random disturbance inputs. The preview controller for epileptic seizures is constructed, and the feasibility and effectiveness of clinical single-target and multi-target stimulation in epilepsy regulation are explored from a computational perspective. In addition, a performance index function is proposed to evaluate the energy consumption of controller with and without preview under different input (target) strategies. Suggestions for different strategies are given in terms of the individualized disease environment of patients. From the perspective of seizure control effectiveness and performance consumption, the results show that the preview controller has a greater advantage. The theory of preview control is applied to the control of epileptic seizures for the first time, and the conclusions of the multifaceted study provide some references for clinical trials and controller applications.</p></abstract>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call