Abstract

The present study aimed to investigate the preventive effect of mussel oil (MO) on gestational diabetes mellitus (GDM) in mice fed by a high-fat and high-sucrose (HFHS) diet. Pregnant mice were allocated to four groups: normal diet + corn oil (CO), HFHS + CO, HFHS + fish oil (FO), and HFHS + MO. The total n-3 polyunsaturated fatty acids (PUFAs) in MO (51.30%) and FO (48.25%) were comparable (mainly C22:6n-3 and C20:5n-3). HFHS + MO and HHFS + FO had a significantly lower area under the curve (AUC) for the oral glucose tolerance test (OGTT) than the HFHS + CO group. The HFHS + MO group but not HFHS + FO group had a significantly lower AUC for the insulin tolerance test (ITT) than the HFHS + CO group. The HFHS + MO group had significantly lower homeostasis model assessment-insulin resistance (HOMA-IR) and fasting serum insulin than the HHFS + FO and HFHS + CO groups. Liver sphingosine kinase 1 (SphK1) was significantly higher, while SphK2, Akt, and P-Akt were significantly lower in the HFHS + CO group compared with the normal diet + CO group. The HFHS + MO group but not the HFHS + FO group had significantly higher SphK2, Akt, and P-Akt than the HFHS + CO group. SphK2 had a strong negative correlation with the AUC for the OGTT (r = -0.759, p = 0.001) and insulin tolerance test (ITT) (r = -0.637; p = 0.008), fasting serum insulin (r = -0.594, p = 0.015), fasting blood glucose (r = -0.587, p = 0.017) and HOMA-IR (r = -0.629, p = 0.009) and a strong positive correlation with Akt (r = 0.594, p = 0.015) and P-Akt (r = 0.676, p = 0.004). In conclusion, mussel oil improved glucose intolerance and insulin resistance during mice pregnancy, which was superior to the effects of fish oil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call