Abstract

IntroductionAnaplastic thyroid carcinoma is a rare, rapidly progressing, highly aggressive thyroid malignancy. Responses to immune checkpoint inhibitors in mismatch repair-deficient/microsatellite instability-high tumours of other locations have shown promising results, and with the extended approval of the PD-1 receptor inhibitor pembrolizumab by the Food and Drug Administration, also anaplastic thyroid cancer (ATC) requires analysis for microsatellite instability (MSI) status.Material and methodsSystematic research for relevant literature was conducted in different databases. Prevalence, detection methods, and the potential prognostic/predictive value of MSI in view of the available targeted therapies were of special focus.ResultsSelected citations revealed the prevalence of MSI in 7.4%, with mutations in the MSH2 gene (33%) being the most frequent, followed by MSH6 (25%) and MLH1 (16.7%) occurring in the following combinations: MLH1-MSH2 (8.3%), MSH2-MSH6 (8.3%), and MLH3-MSH5 (8.3%). No mutations in the PMS2 gene were reported. Sixty-six co-mutations in 9 cases were found, with TP53 (88.9%), NF1 (44.4 %), ATM (33.3%), and RB1 (33.3%) being the most frequent. No RAS mutations were noted. Survival ranged between 2.8 and 48 months, and patient age varied between 49 and 84 years. There are insufficient and heterogenous data concerning the predictive or prognostic value of mismatch repair-deficient/microsatellite instability status.ConclusionsTumour molecular profiling is fundamental in ATC for predictive, prognostic, as well as therapeutic reasons, and analysis of MSI status is strongly suggested because a small subgroup show the MSI signature and might profit from recently approved targeted therapies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call