Abstract

Chromosomal anomalies in human embryos produced by in vitro fertilization are very common, which include numerical (aneuploidy) and structural (deletion, duplication or others) anomalies. Our previous study indicated that chromosomal deletion(s) is the most common structural anomaly accounting for approximately 8% of euploid blastocysts. It is still unknown if these deletions in human euploid blastocysts have clinical significance. In this study, we analyzed 15 previously diagnosed euploid blastocysts that had chromosomal deletion(s) using Agilent oligonucleotide DNA microarray platform and localized the gene location in each deletion. Then, we used OMIM gene map and phenotype database to investigate if these deletions are related with some important genes that cause genetic diseases, especially developmental delay or intellectual disability. As results, we found that the detectable chromosomal deletion size with Agilent microarray is above 2.38 Mb, while the deletions observed in human blastocysts are between 11.6 to 103 Mb. With OMIM gene map and phenotype database information, we found that deletions can result in loss of 81-464 genes. Out of these genes, 34–149 genes are related with known genetic problems. Furthermore, we found that 5 out of 15 samples lost genes in the deleted region, which were related to developmental delay and/or intellectual disability. In conclusion, our data indicates that all human euploid blastocysts with chromosomal deletion(s) are abnormal and transfer of these embryos may cause birth defects and/or developmental and intellectual disabilities. Therefore, the embryos with chromosomal deletion revealed by DNA microarray should not be transferred to the patients, or further gene map and/or phenotype seeking is necessary before making a final decision.

Highlights

  • Chromosome anomalies occur when there is an error during meiosis or mitosis [1]

  • In order to answer these questions, we found that the oligonucleotide microarray platform developed by Agilent can provide such information, which is very useful for detailed analysis of chromosomes and genes, as well as phenotypes in the deleted regions

  • When 15 chromosomal deletion samples from human blastocyst biopsies were re-examined with Agilent array platform, all chromosomal deletions were detected and had matching results between NimbleGen and Agilent platforms. From these 15 human embryo samples, we found that chromosomal deletions were between 11.6–103 Mb, which were larger than the smallest detectable size (2.38 Mb) by Agilent array platform

Read more

Summary

Introduction

Chromosome anomalies occur when there is an error during meiosis or mitosis [1]. High proportions of human embryos resulting from in vitro fertilization (IVF) have abnormal chromosomes, mainly raised from meiosis [2,3,4,5]. Many embryos (either aneuploid or euploid) had structural anomalies, which include chromosomal deletion and/ or duplication [9]. With or without additional structural anomalies, was detected in human embryos, regardless of which chromosome, these embryos are considered abnormal and are not transferred to patients. When a euploid embryo has structural anomalies, especially in case of microdeletion(s), which are generally considered to be more pathogenic than microduplication(s) [10], [11], it is difficult for clinical physicians and patients to make a decision whether the embryo is transferrable or not

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call