Abstract

The vertebrate neural plate contains distinct domains of gene expression, prefiguring the future brain areas. In this study, we draw an extended expression map of the rostral neural plate that reveals discrete domains inside the presumptive posterior forebrain. We show, by fate mapping, that these well-defined cell populations will develop into specific diencephalic regions. To address whether these early subterritories are already committed to restricted identities, we began to analyse the consequences of ablation and transplantation of these specific cell populations. We found that precursors of the prethalamus are already specified and irreplaceable at late gastrula stage, because ablation of these cells results in loss of prethalamic markers. Moreover, when transplanted into the ectopic environment of the presumptive hindbrain, these cells still pursue their prethalamic differentiation program. Finally, transplantation of these precursors, in the rostral-most neural epithelium, induces changes in cell identity in the surrounding host forebrain. This cell–non-autonomous property led us to propose that these committed prethalamic precursors may play an instructive role in the regionalization of the developing diencephalon.

Highlights

  • The vertebrate brain is divided caudal to rostral into the hind, mid, and forebrain

  • The plate looks homogenous, it contains distinct domains that can be identified by differential gene expression

  • These domains correspond to distinct future brain areas

Read more

Summary

Introduction

The vertebrate brain is divided caudal to rostral into the hind-, mid-, and forebrain. These territories are further developing into highly specialised structures. In the case of the hindbrain, subdivisions are easy to detect morphologically, because rhombomeres are marked by visible borders during the course of development [1]. The optic recess creates a border between the dorso-rostral telencephalon and the diencephalon. The latter is traditionally split into five different domains: the ventrally located hypothalamus, the prethalamus (or ventral thalamus), the thalamus (or dorsal thalamus), the dorsally positioned epithalamus, and the caudalmost pretectum [2]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.