Abstract
The pressure-volume-temperature (P-V-T) equation of state (EOS) of MgO is widely used as a pressure scale in static compression experiments. However, there are remarkable inconsistencies among different previously proposed MgO pressure scales. We calculated the P-V-T EOS of MgO up to 300 GPa and 3000 K based on experimental shock Hugoniot data and a simple thermal pressure model within the Mie-Grüneisen-type analysis framework. All of the parameters used can be measured experimentally with high accuracies. We found that, in overall, the calculated P-V-T EOS of MgO has excellent agreement with the available volume compression data over a wide range of pressure and temperature. A comparison of our results with the previous theoretical investigations has also been performed and confirms that our calculated P-V-T EOS of MgO can be used as a reliable pressure scale for static experiments at high pressures and high temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.