Abstract

SummaryAn expression is derived which relates the pressure on a wing in a supersonic free stream to the pressure on a thin wing with the same surface shape. The expression is used to find the pressure distribution for caret wings and flat delta wings with attached flow at their leading edges. The compression surface pressure distributions found are in good agreement with existing experimental and theoretical results, except when large pressure changes occur in the flow behind the attached shock wave. Some expansion surface results are also obtained for wings with an isentropic expansion at the leading edge. The effects of flow and geometry changes on the pressure distribution are investigated. It is found that a small improvement in the lift/drag ratio of a caret wing can be obtained by halving the anhedral required for the plane shock wave condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.