Abstract

Functionalizing noble metal surfaces with (bio)organic molecules is a vibrant field of research, with key applications in medicine, catalysis, and molecular electronics. Control over the molecular self-assembly is essential to creating functional devices. Here, we exploit our high-pressure, high-temperature scanning tunneling microscope (STM) to relate the effects of controllable parameters (temperature and pressure) to atomic-scale assembly mechanisms. Using methanethiol self-assembly on Au(111) as a model system, we monitor the formation and assembly of the ubiquitous (CH3S)2Au “staple” motif into row structures at pressures of up to 1 bar. We observe a pressure-induced transition from the usual 1/3 monolayer (ML) saturation coverage in vacuum to 3/8 ML at 1 bar, thus providing the first evidence for a pressure gap effect for thiol adsorption. Complementing our experiments, we employed dispersion-corrected density functional theory computations to model the formed surface adlayers, corresponding STM images, and underlying equilibrium thermodynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.