Abstract

Summary Applying the realistic cementation exponent (m) in Archie’s equation is critical for reliable fluid-saturation calculation from well logs in shale formations. In this study, the cementation exponent was determined under different confining pressures using a high-salinity brine to suppress the surface conductivity related to the cation-exchange capacity of clay particles. A total of five Ordovician shale samples from the Canning Basin, Australia, were used for this study. The shale samples are all illite-rich with up to 60% clay content. Resistivity and porosity measurements were performed under a series of confining pressures (from 500 to 8,500 psi). Nuclear magnetic resonance (NMR) was used to obtain porosity and pore-size distribution and to detect the presence of residual oil. The complex impedance of samples was determined at 1 kHz to verify the change in pore-size distribution using the POLARIS model (Revil and Florsch 2010). The variation of shale resistivity and the Archie exponent m at different pressures is caused by the closure of microfractures at 500 psi, the narrowing of mesopores/macropores between 500 and 3,500 psi, and the pore-throat reduction beyond 3,500 psi. This study indicates that unlike typical reservoirs, the Archie exponent m for shale is sensitive to depth of burial because of the soft nature of the shale pore system. An equation is developed to predict m under different pressures after microfracture closure. Our study provides recommended experimental procedures for the calculation of the Archie exponent m for shales, leading to improved accuracy for well-log interpretation within shale formations when using Archie-based equations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call