Abstract

The preservation for electron microscopy of saturated phospholipids in general, and phosphatidyl choline (PC)in particular, remains and unsolved problem since OsO(4) and glutaraldehyde are incapable of interacting with PC directly. However, by introducing tannic acid preceding osmication, we were able to demonstrate highly ordered, preserved lamellar structures in model experiments with saturated PC, and in vivo experiments type II pneumocytes of lung tissue. The secretory bodies of the latter are known to contain a high proportion of these saturated phospholipids. In both cases, the repeating periodicity approximated 45 A. It was determined that tannic acid interacts with the choline component of PC to form a "complex," which then could be stabilized by treatment with OsO(4). In the absence of osmication, the PC-tannic acid complex acid did not survive conventional dehydration techniques, but osmication permitted conventional Epon embedment. Sphingomyelin (SPH), which contains choline, behaved similarly in model experiments. But there was no evidence of a comparable reaction with tannic acid using phosphatidyl ethanolamine (PEA), phosphatidyl serine (PS), or phosphstidy inositol (PI). Chemical studies indicted a high pH dependency for the formation of the PC- tannic acid complex. Also, experiments demonstrated its dissociation in various organic solvents. Sharp delineation and great contrast of the polar zones in the ordered lamellar structures was achieved by additional staining with lead citrate thus leading to the conclusion that tannic acid serves as a multivalent agent, capable of simultaneous interaction with saturated PC, OsO(4), and lead citrate stains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call