Abstract

Interest in dendrimer-based nanomedicines has been growing recently, as it is possible to precisely manipulate the molecular weight, chemical composition, and surface functionality of dendrimers, tuning their properties according to the desired biomedical application. However, one important concern about dendrimer-based therapeutics remains-the nondegradability under physiological conditions of the most commonly used dendrimers. Therefore, biodegradable dendrimers represent an attractive class of nanomaterials, since they present advantages over conventional nondegradable dendrimers regarding the release of the loaded molecules and the prevention of bioaccumulation of synthetic materials and subsequent cytotoxicity. Here, we present an overview of the state-of-the-art of the design of biodegradable dendritic structures, with particular focus on the hurdles regarding the use of these as vectors of drugs and nucleic acids, as well as macromolecular contrast agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.