Abstract

In this article, we discuss the current state and future directions in the field of forensic genetics. The DNA analysis of biological traces found at a crime scene, which was first used in a criminal investigation in 1987, did revolutionize forensic science. Over the past three decades, significant advances have been made in the recognition capacity, speed, and sensitivity of DNA profiling methods, as well as in their capability of typing increasingly complex patterns. Creation of DNA databases of criminals and crime scenes, as well as population allele frequencies, allows suspects to be identified from crime scene samples and DNA evidence to be statistically processed to verify its reliability. At present, it has become possible to identify even single cells left at a crime scene and to successfully analyze ancient human remains. Forensic DNA profiling can be used to identify not only individuals known to the investigating authorities. Experts are increasingly applying new genetic markers that can expand the scope of DNA profiling methods. Modern developments enable extraction of new types of forensically significant information from biological traces, e.g., using molecular approaches to searching for individuals previously unknown to investigators. New methods have been proposed to identify the relationship between the donors of forensic samples and the crimes committed. Modern advances in the decoding of the human genome, as well as the availability of genome-wide analysis and sequencing techniques, pave the way for new forensic DNA tools capable of enhancing the quality of forensic science in the near future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call