Abstract

The presence of harmful algal blooms (HABs) and cyanotoxins in drinking water sources poses a great threat to human health. The current study employed molecular techniques to determine the occurrence of non-toxic and toxic cyanobacteria species in the Limpopo River basin based on the phylogenetic analysis of the 16S rRNA gene. Bottom sediment samples were collected from selected rivers: Limpopo, Crocodile, Mokolo, Mogalakwena, Nzhelele, Lephalale, Sand Rivers (South Africa); Notwane (Botswana); and Shashe River and Mzingwane River (Zimbabwe). A physical-chemical analysis of the bottom sediments showed the availability of nutrients, nitrates and phosphates, in excess of 0.5 mg/L, in most of the river sediments, while alkalinity, pH and salinity were in excess of 500 mg/L. The FlowCam showed the dominant cyanobacteria species that were identified from the sediment samples, and these were the Microcystis species, followed by Raphidiopsis raciborskii, Phormidium and Planktothrix species. The latter species were also confirmed by molecular techniques. Nevertheless, two samples showed an amplification of the cylindrospermopsin polyketide synthetase gene (S3 and S9), while the other two samples showed an amplification for the microcystin/nodularin synthetase genes (S8 and S13). Thus, these findings may imply the presence of toxic cyanobacteria species in the studied river sediments. The presence of cyanobacteria may be hazardous to humans because rural communities and farmers abstract water from the Limpopo river catchment for human consumption, livestock and wildlife watering and irrigation.

Highlights

  • Toxic and non-toxic cyanobacteria species are on the increase in most parts of the world, including in South Africa

  • Monitoring and or reducing the nutrient loads into the river system will decrease the threat of cyanobacteria blooms to human and animal health

  • The results obtained in the current study indicated the presence of toxic and non-toxic cyanobacteria species in the bottom sediments of the Limpopo River and its tributaries

Read more

Summary

Introduction

Toxic and non-toxic cyanobacteria species are on the increase in most parts of the world, including in South Africa. The toxic cyanobacteria are known to carry genes that produce cyanotoxins which are lethal to humans. Toxins 2018, 10, 269 mcy gene content, which is the peptide synthetase producing microcystin [1]. This may explain the observation of non-detectable microsystin toxin despite the presence of mcy gene [2]. A study by Frazao et al [3] used the PCR method to determine molecular analysis of genes involved in the production of known cyanotoxins, microcystins, nodularins and cylindrospermopsin. The toxic strains of the cyanobacteria genera, Leptolyngbya, Oscillatoria, Microcystis, Planktothrix and Anabaena are known to have in common the mcy (A–E, G, J) genes that are involved in the biosynthesis of microcystin [1,3]. The nodularin cyanotoxin is linked to the nda synthetase gene, a polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) and biosynthesized by Nodularia spumigena

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call