Abstract

We investigated the transport systems that can sustain Na+ and Cl- movements across bovine gall bladder epithelium, focusing on the Na+-H+ exchanger (NHE) family and chloride conductive pathways. Experiments conducted using the fluorescent probe acridine orange (AO) with brush-border membrane vesicles (BBMV) or vesicles obtained from the total epithelium (EMV) demonstrated the presence of a Na+-H+ exchange in both preparations. The use of specific inhibitors indicated the presence of an apical NHE3 exchanger and a NHE1 isoform which should reside in the basolateral membrane. Using reverse transcriptase (RT) PCR, we identified cDNA fragments corresponding to the NHE1, NHE3, Cl--HCO3- (AE2a) transporters and to the CFTR channel. Using the patch-clamp technique, we investigated Cl- conductances on cultured epithelial cells. We found a 5 pS Cl- channel with a voltage-independent open probability, insensitive to stilbenes (SITS), Zn2+ and cAMP. The results suggest that absorption and secretion coexist in calf gall bladder epithelium. A Na+-H+-Cl--HCO3- double exchange may, at least partially, sustain the absorptive function, and a Cl- apical conductive pathway may be involved in secretion. The conductance we observed does not seem to be cAMP-regulated, unlike other mammalian gall bladders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.