Abstract

Guanylate cyclase-activating proteins (GCAPs) are neuronal Ca(2+) sensors that play a central role in shaping the photoreceptor light response and in light adaptation through the Ca(2+)-dependent regulation of the transmembrane retinal guanylate cyclase. GCAPs are N-terminally myristoylated, and the role of the myristoyl moiety is not yet fully understood. While protein lipid chains typically represent membrane anchors, the crystal structure of GCAP-1 showed that the myristoyl chain of the protein is completely buried within a hydrophobic pocket of the protein, which stabilizes the protein structure. Therefore, we address the question of the localization of the myristoyl group of GCAP-2 in the absence and in the presence of lipid membranes as well as DPC detergents (as a membrane substitute amenable to solution state NMR). We investigate membrane binding of both myristoylated and nonmyristoylated GCAP-2 and study the structure and dynamics of the myristoyl moiety of GCAP-2 in the presence of POPC membranes. Further, we address structural alterations within the myristoylated N-terminus of GCAP-2 in the presence of membrane mimetics. Our results suggest that upon membrane binding the myristoyl group is released from the protein interior and inserts into the lipid bilayer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.