Abstract

Understanding the ecology of ticks and tick-borne microorganisms is important to assess the risk of emerging tick-borne diseases. Despite the fact that the Ixodes pavlovskyi tick bites humans, we lack information including population genetics and the reason for the inadequate distribution in Japan. A 5-year survey revealed that Rishiri Island, the main stopover in the East Asian Flyway of wild birds in the northern Sea of Japan, was a refuge of I. pavlovskyi. The I. pavlovskyi included two haplogroups, which were supposed to diverge a long time before the island separated from the continent and Hokkaido mainland. The detection of microorganisms from wildlife revealed that wild birds and rodents play a role in diffusion and settlement, respectively, of not only I. pavlovskyi but also I. pavlovskyi-borne microorganisms including Candidatus Ehrlichia khabarensis and Babesia microti US lineage. Various island-specific factors control I. pavlovskyi dominance and tick-borne pathogen maintenance. The results may enable us to explain how tick-borne infectious microorganisms are transported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.