Abstract

The process of dispersal can shape ecological communities, but its influence is thought to be small compared to the effects of environmental variation or direct species interactions, particularly for microbial communities. Ants can influence movement patterns of insects and the microbes they vector, potentially affecting microbial establishment on plants, including in agroecosystems. Here, we examine how the presence of aggressive ants, which can influence floral visitation by bees and other pollinators, shapes the community composition of bacteria and fungi on coffee flowers in farms that differ in shade management intensity. We hypothesized that the presence of aggressive ants should reduce the frequency and diversity of floral visitors. Finally, we predicted that the effects of ants should be stronger in the low-shade farm, which has a less diverse community of floral visitors. We sampled microbial communities from nectar and pistils of coffee flowers near and far from nests of the aggressive ant Azteca sericeasur across two farms that vary in shade management and diversity of floral visitors. Bacterial and fungal community composition was characterized using Illumina sequencing of the 16S and ITS regions of the rRNA gene. Consistent with our expectation, Azteca presence was associated with a decrease in the number and diversity of visitors, visit duration and number of flowers visited. Azteca presence influenced microbial communities, but effects differed between farms. Azteca nests were associated with higher bacterial diversity in both farms, but the difference between flowers on trees with and without Azteca was greater in the high-shade farm. Azteca nests were associated with higher fungal diversity in the high-shade farm, but not the low-shade farm. In addition, the presence of ants was strongly associated with species composition of fungi and bacteria in flowers, but differentiation between ant and no-ant communities was greater in the low-shade farm. Specific operational taxonomic units (OTUs) were differentially associated with the presence of ants. We conclude that indirect interactions that influence dispersal may have large effects on microbial community composition, particularly in ephemeral microbial communities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.