Abstract

AbstractThe probability distribution of chain ends meeting when one end of the polymer is fixed to a certain distance to a reflecting wall is investigated. For an ideal polymer chain the probability distribution can be evaluated analytically via classic polymer theory. These analytical predictions are compared to atomistic MD simulations of one tethered alkane chain close to the wall. The results demonstrate that a confining wall can lead to a significant increase in the return probability for the chain ends, and thus, can increase the occurrence of ring‐closing reactions. It is further demonstrated that the excess return probability shows a maximum at a certain distance, thereby yielding an optimal catalyst position in the ring‐closing reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.