Abstract

The ellipticity of hardwood logs is most often observed and measured from either end of a log. However, due to the nature of hardwood tree growth and bucking practices, the assessment of ellipticity in this manner may not be accurate. Trees grown on hillsides often develop supporting wood that gives the first few feet of the log butt a significant degree of ellipticity, while the rest of the log may be more circular. Good log bucking methods dictate that a log be bucked near a fork or a large knot, creating a higher-valued lower log and a jump cut or a lower-valued upper log. This practice and the additional supporting (buttress) wood below the knot can make the upper end of a log exhibit ellipticity. In this study, 703 hardwood logs from Appalachian forests were scanned using a high-resolution laser scanner, and the ellipticity and the angle of the greater axis was recorded for every foot along each log. Approximately one-third of the logs exhibited moderate to severe eccentricity on the small end. However, most logs (99%) did not exhibit significant ellipticity along the entire length. Furthermore, the mean length of the elliptical zone for all species was 3.3 feet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.