Abstract

Modules are common functional and structural properties of many social, technical and biological networks. Especially for biological systems it is important to understand how modularity is related to function and how modularity evolves. It is known that time-varying or spatially organized goals can lead to modularity in a simulated evolution of signaling networks. Here, we study a minimal model of material flow in networks. We discuss the relation between the shared use of nodes, i.e., the cooperativity of modules, and the orthogonality of a prescribed output pattern. We study the persistence of cooperativity through an evolution of robustness against local damages. We expect the results to be valid for a large class of flow-based biological and technical networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.