Abstract

The spherical primary mirror (Mb) of the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) is segmented and composed of 37 hexagonal sub-mirrors, and segmented active optics method is successfully developed in it. LAMOST project has passed through the project acceptance in 2009. The success of LAMOST makes deployable primary mirror possible. The deployable large aperture space astronomical telescope is one of the most development potential space observation spacecrafts in the future. This paper is targeted at the reflecting Schmidt telescope LAMOST, which has a 6.67X6.05m primary mirror. The feasibility of the deployable structure of the large reflecting space telescope's primary mirror has been mainly researched. The analysis of the design scheme for the deployable primary mirror has been carried out, and according to the feature and the design of LAMOST, a subdivision type deployment scheme has been given; The locating principle of the both side wings and the locking device after deployment has been analyzed; In addition the problems in the process of deployment is also preliminary discussed. This paper is targeted at the reflecting Schmidt telescope LAMOST, which has a 6.67X6.05 primary mirror. The feasibility of the deployable structure of the large reflecting telescope's primary mirror has been mainly researched. The analysis of the design scheme for the deployable primary mirror has been carried out, and according to the feature and the design of LAMOST, a subdivision type deployment scheme has been given; The locating principle of the both side wings and the locking device after deployment has been analyzed; In addition the problems in the process of deployment have been preliminary discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call