Abstract

The thermal properties together with the identification of the emitted volatiles during heating of the starch-graft-poly(geranyl methacrylate) copolymers with the use of a TG/FTIR-coupled method and some of the physicochemical properties of the copolymers were determined. It was found that the use of the geranyl methacrylate monomer to the graft copolymerization with potato starch allowed to replace ca. 1.46 hydroxyl groups per glycosidic units of starch macromolecule by the poly(geranyl methacrylate) chains under the optimal reaction conditions. Generally, all tested starch graft copolymers exhibited a significant increase in polar solvent resistance, moisture resistance and chemical stability as compared to potato starch. However, the thermal stability of the obtained materials was substantially lower as compared to the thermal stability of potato starch. The beginning of the decomposition of the copolymers was observed below 150 °C. It was due to low thermal stability of the poly(geranyl methacrylate) chains. The decomposition of the prepared materials runs at least four, unseparated stages. The first stage was visible up to 220–240 °C. It was connected with the emission of some aldehyde, acid, alcohol, alkene, ester fragments, H2O and CO2 as a result of the depolymerization, destruction and partial decarboxylation of the poly(geranyl methacrylate) chains. The second stage was spread between ca. 220–240 and 358–375 °C. The emission of organic, saturated, unsaturated, aromatic, oxygen-rich fragments, CO, CO2 and H2O as a result of the decomposition and dehydration of starch was confirmed. Heating of the studied materials between 358–375 and 455–477 °C resulted in subsequent decomposition processes of the residues and the creation of some oxygen-rich saturated and unsaturated fragments, CO, CO2, H2O and CH4. Finally, above 455–477 °C, a minor mass loss as a result of the decomposition processes of the residues formed before was observed. The emission of CO, CO2, H2O, CH4 and some oxygen-rich saturated and unsaturated fragments was confirmed.

Highlights

  • The chemical modification of native starch with some methacrylate monomers in the graft copolymerization processes is widely studied

  • The main objectives of this paper were to study the thermal behavior and the type of the volatiles emitted during the heating of the novel starch-graft-poly(geranyl methacrylate) copolymers in the presence of inert atmosphere by applying the TG/FTIR-coupled method as well as the determination of the effect of the graft reaction conditions on the course of the graft copolymerization of geranyl methacrylate and potato starch and their some physicochemical properties such as the ability of the obtained copolymers to gelate with water, swelling, moisture and solvent resistance and chemical stability

  • The results indicated a subsequent decomposition of the created residues from starch and poly(geranyl methacrylate)

Read more

Summary

Introduction

The chemical modification of native starch with some methacrylate monomers in the graft copolymerization processes is widely studied. Spychaj et al [12] have described the preparation of the starch-grafted-N-

Objectives
Methods
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.