Abstract

AbstractThe complex materials systems in VLSI devices require specialized preparation techniques for TEM microstructural analysis. For this purpose, it is desirable to obtain electron transparency in all material layers from the oxides used in dielectrics to refractory metals such as tungsten. The primary advantage of dimpling these materials is that ideal specimens are obtained for low angle ion milling. By dimpling both sides of the cross section with a padded flatting tool, a thicker specimen of 130μm at the outer rim of the 3mm disc is produced that narrows to the 125nm thickness fringes in the center. These samples do not require a copper support grid, thereby allowing for a lower milling angle of 2.5 degrees on both sides of the specimen. This technique provides a cross section that is electron transparent in all layers without the loss of oxides due to differential thinning rates of various materials at higher milling angles.It is generally thought that precision thinning through a submicron feature is not possible on the dimpler. However, a simple step-by-step procedure for this technique will be demonstrated and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.