Abstract
In order to further develop the potential applications of lignin biomass, the research on lignin nanoparticles (LNPs) and their nanocomposites has attracted increasing attention. In this study, a facile and no chemical modification approach to prepare stable alkali lignin nanospheres is presented. The nanospheres around 85–125 nm were prepared through the π-π interactions between molecules in the self-assembly process. Lignin alkali was dissolved in ethylene glycol at different initial concentrations and subsequently ultrasound and dialysis treatment were conducted to prepare LNPs. The prepared LNPs had zeta potentials between −20 mV and −40 mV, and they were electrostatically stable over the pH range of 3 to 12 in aqueous solution. The chemical structure of LNPs was not significantly modified compared to lignin. Meanwhile the increased content of carboxyl and aliphatic hydroxyl groups in the LNPs structure was observed. Furthermore, the thermal stability and solubility in organic solvents (ethanol, acetone and THF) of LNPs were enhanced compared to those of lignin. In vitro cell viability evaluation indicated that the prepared LNPs had no cytotoxicity and excellent biocompatibility with mouse fibroblast. Therefore, we proposed here the production of high-quality and renewable LNPs, which will provide a novel perspective for multifunctional applications of bio-based nanomaterials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.